1. 首页 > 星座配对表 > 文章页面

溢油边缘检测算法及MATALAB实现(边缘检测算法的基本原理)

图像的边缘检测 Matlab代码实现

大家好,今天小编来为大家解答...溢油边缘检测算法及MATALAB实现_图像边缘检测算法这个问题,数字图像边缘检测算法很多人还不知道,现在让我们一起来看看吧!

本文目录

...溢油边缘检测算法及MATALAB实现_图像边缘检测算法sobel边缘检测优缺点与canny算子的优缺点...溢油边缘检测算法及MATALAB实现_图像边缘检测算法

摘要:为准确地提取出SAR图像中溢油区域边缘轮廓信息,提出一种融合分水岭及canny算子的SAR图像边缘检测算法。该算法首先使用形态学重建技术对前景图象进行标记,并进行开关操作,去除边缘无关信息,然后对前景进行区分操作。利用分水岭算法及canny算子较为精确地提取出溢油区域边缘轮廓信息并用MATALAB仿真实验,结果表明,与经典的边缘检测方法相比,该方法在精确定位图像边缘的同时能更精确、更完整地检测出目标的边缘特征。

图像边缘检测算法体验步骤

关键词: SAR图像;分水岭算法;溢油;MATALAB;边缘轮廓检测

0前言

海上溢油现象严重影响海洋生态环境,因此对海洋表面进行实时动态监测成为必要。合成孔径雷达(SAR)具有高分辨率、大面积数据获取能力,全天候、全天时数据获取能力和一定的穿透植被、遮盖物的能力[1]。因此被应用于海洋表面的溢油监测,本文则选取合成孔径雷达所监测到的墨西哥湾溢油图像进行边缘检测处理,得到了良好的溢油区域的边缘轮廓信息,为以后SAR图像特征的提取及计算机自动识别SAR图像目标区域奠定了基础。目前已有许多边缘检测算子,如Sobel算子、Prewitt算子、Robert算子、Log算子、Canny算子等[1]。这些传统的算子对SAR图像进行检测往往会使得目标的边缘改变,不能够获得连续的边缘轮廓信息,给后续处理带来困难。而融合其中的Canny算子和标记分水岭分割算法能够较好的获得准确连续的边缘轮廓信息。

1 SAR图像预处理

由于在获取溢油区域的SAR图像的过程中存在各种干扰,所获得的SAR原始图像当中存在相干斑噪声及几何失真和辐射失真,因此必须对其进行一系列滤波及矫正预处理。本文则采用NEST 3C软件对原始SAR图像进行几何矫正、辐射矫正及斑点滤波,其中斑点滤波采用3*3均值滤波和7*7gamma滤波。对预处理完的图像则使用ENVI 4.7软件对其进行数据重采样获得本文所要处理的SAR图像。

2基于Canny算子的SAR图像边缘检测

Canny边缘检测算子是一类最优边缘检测算子,他在许多图像处理领域得到了广泛的应用[2]。Canny算子具有定位能力强、低误判率、抑制虚假边缘等优点[3]。但是Canny算子是针对加性噪声模型的,因此在SAR图像的边缘检测时容易使边缘产生不连续性。

3基于标记分水岭算法的SAR图像边缘检测

分水岭边缘检测方法,是一种基于拓扑理论的数学形态学的检测方法,其基本思想是把图像看作是测地学上的拓扑地貌,其中灰度值对应着地形高度值[2]。每一个小的局部区域及其影响区域称为集水盆地,集水盆地的边界则形成分水岭。分水岭算法就是向集水盆地不断灌入水的过程,在两个集水盆地汇合处形成山脊,即形成分水岭。找出分水岭便找出边缘信息。

标记分水岭图像分割算法[4]能够将图像中的目标区域与非目标区域紧密连接的目标区域分割出来,能够分离出弱边缘,且分水岭变换产生完整的边界,这样就避免了边界连接的后处理。但是由于噪声和纹理细节会带来过分割问题,另外,在分割过程中较少用到边界特征信息,使得图像的过分割问题比较突出,容易产生虚假边缘。

4组合两种算法的边缘检测算子及其MATALAB实现

为了使标记分水岭分割算法能够用于SAR图像边缘检测并使其具有连续性且边缘定位准确,又能抑制虚假边缘。可在标记分水岭算法的基础上融合canny算子,形成一种良好地描述溢油区域边界信息的算子。

其实现过程为:通过标记分水岭分割算法标记非溢油区和边界区为前景区,溢油区为背景区,再使用canny边缘检测算子进行边缘检测分离出非溢油区和边界区,从而得到较为完整的溢油区域边缘轮廓信息。

其MATALAB处理结果及具体程序代码:

MATALAB程序代码为:

clear;

[I,p,t]=freadenvi_image("F:\b\ENVISAT-ASA_IMP_1PNCUH20060524_141948_000000162048_00025_22123_0430.N1_Calib_Spk_Spk_reprojected.data\Sigma0_VV(4122-4653)(5898-6500)");%读取envi图像

subplot(2,2,1)

imshow(I),title("预处理完图像")

hy= fspecial("log");%log算子

hx= hy";

Iy= imfilter(double(I), hy,"replicate");

Ix= imfilter(double(I), hx,"replicate");

gradmag= sqrt(Ix.^2+ Iy.^2);

L= watershed(gradmag);

se= strel("disk", 45);

Io= imopen(I, se);

Ie= imerode(I, se);

Iobr= imreconstruct(Ie, I);

Ioc= imclose(Io, se);

Iobrd= imdilate(Iobr, se);

Iobrcbr= imreconstruct(imcomplement(Iobrd),...

imcomplement(Iobr));

Iobrcbr= imcomplement(Iobrcbr);

fgm= imregionalmax(Iobrcbr);

I2= I;

I2(fgm)= 255;

se2= strel(ones(1,1));

fgm2= imclose(fgm, se2);

fgm3= imerode(fgm2, se2);

fgm4= bwareaopen(fgm3, 20);

I3= I;

I3(fgm4)= 255;

bw= im2bw(Iobrcbr, graythresh(Iobrcbr));

D= bwdist(bw);

DL= watershed(D);

bgm= DL== 0;

gradmag2= imimposemin(gradmag, bgm| fgm4);

L= watershed(gradmag2);

I4= I;

I4(imdilate(L== 0, ones(3, 3))| bgm| fgm4)= 255;

subplot(2,2,2)

imshow(I4)%突出前景及边界

title("分水岭算法边缘检测")

subplot(2,2,3)

Y= edge(I,"canny");

imshow(Y),title("canny边缘检测");

subplot(2,2,4)

Z= edge(I4,"canny");

imshow(Z),title("融合边缘检测");

5结论

1)传统的边缘检测方法能够获取目标的一些边缘特征,但提取出的目标边缘特征存在断裂及目标定位不准确的情况。此外,原始方法提取的边缘特征在细化描述边缘轮廓时不能实现有效检测。

2)利用本文方法提取的边缘特征清晰、连续,能够较好的描述原始SAR图像中溢油区与非溢油区分界处边缘轮廓信息。

参考文献:

[1]张静、王国宏、刘福太,基于正则化方法的SAR图像分割及目标边缘检测算法,吉林大学学报(工学版),2008年1月第38卷第1期.

[2]张德丰,详解MATALAB数字图像处理,电子工业出版社,2010年.

[3]安成锦、杜琳琳、王卫华、陈曾平,基于融合边缘检测的SAR图像线性特征提取算法,电子与信息学报,第31卷第6期.

[4]高丽、杨树元、李海强,一种基于标记的分水岭图像分割新算法,中国图象图形学报,2007年6月第12卷第6期.

sobel边缘检测优缺点与canny算子的优缺点

一、sobel边缘检测:

1、sobel边缘检测优点:输出图像(数组)的元素通常具有更大的绝对数值。

2、sobel边缘检测缺点:由于边缘是位置的标志,对灰度的变化不敏感。

二、canny算子:

1、canny算子优点:法能够尽可能多地标识出图像中的实际边缘;标识出的边缘要与实际图像中的实际边缘尽可能接近。

2、canny算子缺点:图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘。

扩展资料:

Sobel边缘检测的核心在于像素矩阵的卷积,卷积对于数字图像处理非常重要,很多图像处理算法都是做卷积来实现的。

卷积运算的本质就是对制定的图像区域的像素值进行加权求和的过程,其计算过程为图像区域中的每个像素值分别与卷积模板的每个元素对应相乘,将卷积的结果作求和运算,运算到的和就是卷积运算的结果。

参考资料来源:

百度百科-sobel

百度百科-Canny算子

文章到此结束,如果本次分享的...溢油边缘检测算法及MATALAB实现_图像边缘检测算法和数字图像边缘检测算法的问题解决了您的问题,那么我们由衷的感到高兴!

基于遗传算法的噪声图像的边缘检测 Matlab代码实现

联系我们

Q Q:

微信号:

工作日:9:30-18:30,节假日休息

微信